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A modification of the projection technique in convolutionless form is 
developed. The dynamical basis of macroscopic theory is discussed with 
the aid of this method in order to remove from it superfluous and artificial 
suppositions, in particular, those of a probability theory nature. It is shown 
that sufficient instability of the system with respect to the initial microstate 
naturally leads to the possibility of a macroscopic description, the latter 
proving to be closed, causal, and asymptotically exact. The objective sense 
of the theory and the principal questions of its interpretation are discussed. 
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1. I N T R O D U C T I O N  

Recent progress in the theory of  irreversible processes has been accompanied 
by the steady weakening of suppositions of a probability theory nature, which 
long were considered as inalienable attributes of the theory. At present we 
can assert that suppositions of this kind are unnecessary for the foundation 
of the macroscopic theory: The necessary contraction of the exact dynamical 
description is provided by the system dynamics itself. More strictly, this 
assertion may be formulated as the alternative: Either the dynamical system 
has the properties that provide the possibility of its description in terms of 
macroscopic variables (on the coarsened time scale) without using any statistical 
hypotheses, or a macroscopic description is not possible at all. 

The chief questions concerning the basis of the macroscopic theory 
have become more accessible following the work carried out by the Brussels 
group in the last decade, <1-8) and especially since the developed theory was 
translated into the projection formalism language. <4) The present paper is 
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devoted to the further development of this approach 2 both in its formal 
aspect and from the viewpoint of its physical interpretation. 

In Section 2 we find a new representation of  the Brussels formalism, 
which is intimately connected with the "Markovizat ion"  of the master 
equation. In contrast with previous ways of eliminating the memory, (7-1~ 
our method (1~ is more suitable for practical calculations. The "Markovized"  
representation enables one to simplify essentially the proof  of all the results 
of  the theory because for the derivation of the asymptotic formulas (see 
Section 3) there is no necessity of using the Laplace transform, which leads 
to the cumbersome combinatorial calculations. Moreover, the present 
formalism provides a natural and straightforward proof  of new and useful 
results and relationships. For instance, the generator of macroevolution is 
defined by a linear problem (see Section 3). 

However, the main merit of the formalism is its physical obviousness. 
The starting point of the physical interpretation of the macroscopic theory 
is the assertion that the macrodescription must be adequate for a definite 
class of experiments, namely, those carried out with devices with finite time 
resolution. The consistent realization of this simple idea enables us to formu- 
late (in Sections 2 and 3) common requirements for the dynamical system 
in order for its macroscopic description to be possible. Although we give no 
strict mathematical basis for the theory 3 and limit ourselves to a qualitative 
discussion, the formalism is so transparent that the conditions found appear 
to be final. In other words, these requirements, being sufficient, are minimal 
at the same time. 

Specifically, the adequacy idea is expressed in the fact that the macro- 
scopic theory arises as the result of  smoothing (averaging over time on a 
definite scale) of the dynamical picture. This natural interpretation turns out 
to be sufficient for an unambiguous answer to questions of the objective 
sense of the contracted description, the nature of irreversibility, the causality 
of the macrodescription, etc. 

The formalism may be used not only in connection with perturbation 
theory for the Liouville (or von Neumann) equation, as is done in most 
work, but also for the description of any regime of  physical interest (kinetic, 
hydrodynamic, turbulent), and even in situations beyond the theory of 
irreversible processes (scattering theory, theory of stochastic equations). 
The statement of the dynamical problem and the choice of the projector are 
peculiar in every specific case, but the common results of the theory are 
insensitive to them. Therefore, we limit ourselves to an abstract statement of  

2 An interesting and in some respects similar approach to the one presented here was 
initiated by Mori c5~ (see also Ref. 6); however, in that work the opportunities of the 
formalism have not been used completely. 

3 For nondissipative systems some strict results were found by Kummer. C12~ 
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the formalism, due to which the structure of  the theory seems to be especially 
simple and lucid. 

For  completeness and to demonstrate the compactness of  the formalism, 
we also give new proofs of  known results, which in part  are given in the 
appendix. 

2. D Y N A M I C A L  P R O B L E M :  F U N D A M E N T A L  SOLUTION 

Let the closed dynamical system ~ be described by the state vector F(t)  
obeying the equation 

(Or - ~q,f')F(t) = 0 (1) 

and let the idempotent operators P = p2 and Q ---- 1 - P = Q2 (conven- 
tionally called "projec tors")  be defined over the state space so that the 
projector P separates out the macroscopic component  of  the state vector, 5 
PF( t )  =- f ( t ) ,  while the component  Q F ( t ) - - h ( t )  contains the irrelevant 
microscopic information. The choice of the operator P usually is limited 
only by the condition that the component  f ( t )  must be expressed in terms of 
macroscopic observables, which, in turn, are chosen from physical con- 
siderations. However, the theory allows us to verify, in principle, the correct- 
ness of  this choice a posteriori. 

The dynamical problem (1) is considered as the Cauchy problem, which 
is conveniently treated with the help of the fundamental (retarded) solution 
satisfying the equation 

(Or - ~e)U(t)  = 3(0,  U(t < 0) = 0 (2) 

Introducing special notations for the P and Q components of  the dynamical 
operator, 

s = p ~ e + P=L~ O + o ~ e + Q s Q ==_ c~ + 5e 1 + ~z~ 2 + s  (3) 

and, analogously, for those of  the fundamental solution, 

U(t) = U(t) + U,(t)  + U2(t) + U(t) (4) 

we can write the components of  Eq. (2) in the form 

- = P +  lu2(t) (5) 

(~  - ~ 3 U 2 ( t )  = =~q~2U(t) (6) 

(bt - ~ ) U ~ ( t )  = ~ a O ( t )  (7) 

( 8 ,  -  e30(t) = Q +  e va(t) (8) 
4 The generalization to open systems with time-dependent dynamical operator s 

offers no difficulties and was performed, for instance, by Demendy cla) (in the conven- 
tional treatment). 

5 In the general case the projector may be dependent on time (see, for instance, Ref. 6). 
However, this does not introduce serious difficulties, since the operator P(t) always 
acts on the expression referred to the same moment t. 
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Using the elementary retarded Greenians 

G(.r) = O(-r) exp(r~)P,  G(7) = O(r) exp(~-S)Q (9) 

and the basic fragments of the theory (also retarded) 

~b(z) = ~ l d ( r ) ~ 2 ,  C(t) = (~('r),s D(~') = ,s (10) 

we can represent the formal solution of the system of Eqs. (5)-(8) as (14) 

O= G+ G , ~ ,  O= (1 - G ,  ~ ) -1 ,  G 
(11) 

U I =  O . D ,  U 2 = C * O ,  O = ( ~ + C * O * D  

where the " s t a r "  means the time convolution over the interval (0, t). In 
this representation the component O(t) plays the determining role. 

On the basis of this solution one can easily obtain for the macroscopic 
component 

f ( t )  = O(t)f(O) + Ul(t)h(O) (12) 

the well-known master equation with memory 

f2 (a t - ~ ) f ( t )  = d.c ~b(z)f(t - T) + D(t)h(O) (13) 

In what follows, however, we diverge from the method of the Brussels group, 
having found a new representation for the component U(t) which leads directly 
to the "Markovizat ion" of Eq. (13). 

The equation for O(t), which is obtained by the elimination of U2(t) 
from Eqs. (5) and (6), is 

f ]  dr" - (at - S~)O(t) = e 3(t) + ~b(t t")O(t") (14) 

where it is taken into account that we look for the solution for t > 0 with the 
initial condition 0(0) = P. However, since hitherto all the equations were 
exact and, consequently, causal (as is the original dynamical problem itself), 
we can define O(t') for the intermediate time (0 < t '  < t) with the given 
O(t). In that case, using the advanced Greenian 

67~(~ -) = - 0 ( -  ~-) exp(~r~)P (1 5) 

we have 

f/ J/ O(t') = - 8 ~ ( t  ' - t)O(t)  + dtl 8~(t ' - t~) dt" ~(h - t")O(t") 

=_ - d ~ O ( t )  + 8 ~ ,  ~b, 0 = - (1  - G ~* ~b) -~ * G~O(t) 
(16) 
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Inserting this in Eq. (14), we transform it to 

[or - r ( t ) 10 ( t )  = P ~(t), I ' ( t )  = ~ + ~,(t, t) (17) 

where (for arbitrary time arguments) 

r = - r  - C o , ~ ) - l , C  ~ = - ~ , ~ . C  o, 

f~ = (1 - ~ .  G~) -1 (18) 

Hence the equation for ), is 

~, = - ~ , ( 7  ~ + r  C ~ , y  (19) 

Rewriting it in detail with the help of the definitions given above, we obtain 
after a sequence of transforms ~ls) 

f2 ~,(t, t )  = dr  ~(r)  K ( . / t )  (20) 

where the operator K is defined by the linear integral equation (for ~" > 0) 

K(~-lt ) = e x p ( - r ~ )  - de  dO {exp[(cr - r)L,P]}ff(e)K(cr + sit) 
(21) 

Thus, we have obtained a new, somewhat more suitable, representation 
of the fundamental solution (11), in which, according to Eq. (17), the com- 
ponent ~(t)  is expressed as 

( s  U(t) = exp+ art' r ( c )  e (22) 

where exp § is time-ordered and we have omitted the factor O(t) since in the 
following only times t > 0 will be considered. 

Such a representation leads directly to the elimination of  memory from 
the master equation (13). To show this with minimum labor, we have to 
repeat the previous construction for the component U!( t )  defined by Eqs. 
(7) and (8). As a result, 

Y2 Uz(t) = dr exp+ dt '  I '(t ') A(r, 0) (23) 

where 

2~ = f ~ , D  = D + ~ * S a *  A (24) 

or, in more detail, 

zX(u ~, O) = D(~)  - dr  de  ~(~){exp[(o ~ - �9 - e)~]}A(cr, 0) (25) 
- - 7  
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Inserting Eqs. (22) and (23) in the definition of macrocomponent (12), we 
find after time differentiation 

[0 , -  P(t)]f(t) = A(t, 0)h(0) (26) 

If  F(t) achieves a definite limit with time, then, defining 

P(t) = F ~ + 3F(t), F ~ = limt_~co F(t) (27) 

we can rewrite Eq. (26) in the form 

(Or - F~ -- 3r(t)f(t) + ~(t, 0)h(0) (28) 

where the right-hand side describes the difference of the dynamical picture 
from the macroscopic one. 

3. A S Y M P T O T I C  S O L U T I O N  

To this point we have been considering the exact dynamical relation- 
ships. Below we shall try to find the minimal conditions that provide the 
contraction of this description and the foundation of the macroscopic theory, 
i.e., the derivation of the closed equation for the component f( t) .  First, as 
follows from Eq. (13), this can be achieved only when the contribution of 
the "initial correlations" H(t )=  D(t)h(O) damps with time sufficiently 
quickly, the damping having been provided for all h(0), since in the macro- 
scopic framework we cannot state any suppositions about the microstate 
[for instance, to suppose h(0) = 0--"preparat ion of the system"], which are 
not controllable by the macroscopic experiment. If the characteristic time 
of damping of H(t), Zm, is much smaller than the characteristic evolution 
time o f f ( t ) ,  rM, the macroscopic theory may be defined as the result of the 
averaging of the dynamical picture on some intermediate scale ~*: ~'m << 
�9 * << zu. The first strong inequality is necessary to exclude, with sufficient 
correctness, the contribution of the irrelevant microinformation; the second 
is necessary to preserve the differential-in-time character of the macro- 
description. The main advantage of this simple interpretation 6 consists in 
the fact that it is adequate to the real experimental situation--the observation 
with a device with finite time resolution r*. Moreover, there is no necessity 
of introducing into the theory of any artificial construction of the type of 
averaging either over the phase space or over the ensemble. 

In practice, it is more convenient to use, instead of averaging on the 
scale r*, the limiting procedure, since the result of averaging coincides with 
the corresponding limit (in a strong sense), if the latter exists. One has to 
remember, however, that from the physical point of view we are interested 

6 of  course, it is no more than a concretization of the idea of hierarchy of time scales, 
which was used by Chapman and Enskog and was clearly formulated by Bogoliubov. (16~ 
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in the limit which is achieved on the finite time interval r*, so that all the 
slow dependences on t are preserved. In other words, it is the limit in the sense 
of the Tauberian theorems, and we use for it the special symbol r*-lim. 

The microinformation enters in the theory not only due to the contribu- 
tion of  the initial correlations; therefore, we need other damping conditions, 
the totality of which will be subdivided in three groups: 

A1 : ~-*-limt r = ~-*-limt Sel[exp(t~e~)]Lz2 = 0 
(29) 

A2: ~-*-lim, D(t)h(O) = r*-limt Sel[exp(tL2)]h(0) = 0, Vh(0) 

B: r*-limt C(t) = r*-limt[exp(tLP)]~2 = 0 (30) 

C: ~-*-limt G(t)h = ~-*-limt[exp(tf)]h = O, Vh (31) 

Deferring the discussion of the physical justifiability of these conditions to 
the following section, let us find on their basis the asymptotics of  the funda- 
mental solution. 

First, let us mention that if condition A~ is fulfilled, the ~-*-lim of Eqs. 
(20) and (21) is well defined: 

fo 7 ~ = ,*-limt 7(t, t) = dr ~b(r)K~ (32) 

K~ = ,*-lim, K(~'lt) 

= [exp(-r~L~)] - d~ do a {exp[(a - ~')s162176 + 8) (33) 

due to which the supposition (28) is justified, i.e., 

r*-limt P(t) = P~ = s + 7 ~ 
(34) 

r*-limt 8P(t) = ~'*-limt [7(t, t) - 7 ~ = 0 

Using the conventional manipulations with the operator exponent (the 
interaction representation), one can represent the component /~(t) [(22)] 
in the form 

{fo' } U(t) = [exp(tU~ dr' [exp(-  t 'F~ ~r(t ' )  [exp(tT~ P 

- [exp(tr~ A(t)  (35) 

where the operator A(t)  also has the well-defined limit 

{f; } A ~ = T*-limt A(t)  = exp+ dt' [exp( - t 'P~  ~P(t') [exp(t'F~ P (36) 

Since, as one can easily surmise, the operator P~ describes the macroscopic 
(slow) evolution, we find for the asymptotic behavior of U(t) 

U~ = r*-limt [7(0 = [exp(tr~ ~ (37) 
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With the help of  Eqs. (11) and (35), the componen t  U~(t) may  be repre- 
sented as follows: 

U,( t )  = dr  {exp[(t - ,)r~ - . ) D ( . )  (3a) 

Here  the t ime integral converges quickly when the opera tor  D damps ;  
therefore,  if conditions A ,  and A2 are fulfilled, 

fo ~ Ul~  = r*-limt Ul( t )  = dr  {exp[(t - r)lP~ ~ D(r )  = [exp( tP~176  ~ 

(39) 

where 7 

E D ~ = A ~  d-~ [ e x p ( - r P ~ 1 7 6  ) 

= d~- [ e x p ( - . r ~  po .  = Ao- lpoAo (40) 

In  the definition 

U2(t) = &- C(r){exp[(t - ~-)P~ - ~) (41) 

the convergence of  the integral m a y  be provided only by the damping  of  
C(r) ;  therefore, if the condit ions A, and B are fulfilled, the asymptot ic  
behavior  of  U2(t) is given by 

U2~ = r*-limt U2(t) = C~176 ~ (42) 

with 

C ~ = dr  C(r )  e x p ( - r I  "~ (43) 

Finally, for the existence of  the well-defined asymptot ic  behavior  of  

U(t)  = G(t)  + dr1 d% C(%)  

• { e x p [ ( t -  % - ~=)P~ ~1 - ~2)D(~2) (44) 

the fulfillment of  all the condit ions A1, A2, B, and C is required, and so 

O~ = r*-limt O(t)  = C~176176  ~ (45) 

Equat ions (37), (39), (42), and (45) are the basis of  the " s u b d y n a m i c s "  

v The existence of the inverse operator A ~ is provided by the representation (36); 
r ~ is the result of "star-transforming" I '~ (see appendix)3 a~ 
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due to Prigogine and co-workers, which reduces the original dynamical 
problem to the description of the evolution of the smoothed state vector 

f~  = U~ U~ = (1 + C~176176 + D ~ (46) 

For its components we have 

f~  = Pr~ = [exp(tF~176 + D~ (47) 

h~ = Qr~ = C~176 F~ = (1 + C~176 (48) 

Equation (48) exhibits the intimate connection of the subdynamics idea 
with that of synchronization suggested by Bogoliubov. (16) From Eq. (47) 
the closed equation for the smoothed macrocomponent follows: 

(~t - P~176 = 0 (49) 

which has to be solved with the initial condition 

f~ = A~ + D~ (50) 

The same Equation (49) is obtained as the result of smoothing the master 
equation (28), since, as follows from Eq. (25), the opertor A(t, 0) has the same 
damping property as D(t). However, in this case the initial condition, 
instead of Eq. (50), is simply the smoothed value of f(0). We defer the 
discussion of this point to the following section. 

A special role in the Brussels approach belongs to the operator 

II = (1 + C~176 + D ~ ) (51) 

about which we can assert the following. 
1. The operator II is well defined if the operators A ~ D ~ and C ~ are 

defined, i.e., when the conditions A1, As, and B in (29) and (31) are fulfilled. 
If, besides, the condition C is fulfilled, i.e., U~ [(46)] exists, then II = U~ 

2. As a consequence of the equality (A.4), the operator II is 
idempotent (17,18): 

II 2 = (1 + C~176  + D~176176 + D ~ = II (52) 

3. The operator II commutes with the dynamical propagator (19) [see 
(h. 13)]: 

IIV(t) = V(t)II = G~ (53) 

These properties are important because, according to the definition (46), 

F~ = H e ( t ) =  U~ U~176 U(t)F~ (54) 

Thus, the smoothed state vector is obtained by the action of the operator 17 
on F(t) O.e., the operator II plays in the calculation the role of a device in 
the experiment) and obeys the original dynamical equation, but with the 
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smoothed initial data. The latter, in particular, justifies the scheme suggested 
by Zubarev, (2~ in which the nonequilibrium statistical operator is defined as 
the solution to the Liouville equation with the macroscopic initial condition. 

To conclude this section, we mention that the equivalence of the results 
found above to those obtained by the Brussels group is almost obvious, and 
only two points connected with the/new determinations of the operators 
A ~ [(36)] and P~ = L,P + 7 ~ [(32) and (33)] should be clarified. As for A ~ 
the question is solved easily, since due to the equality (A.4) in both approaches 
it is represented in the form 

A ~ = (1 + D~176  (55) 

For I ~~ with the help of iterations of Eq. (33), we directly obtain the expan- 
sion in powers of ~b: 

f j  fro ~ F ~ = ~ + dr if(r) [exp(-  r ~ ) ]  - dzl  dr2 dt 

• ~(rl){exp[(t - ~'1)~])~(~'2)(exp[-(t + ~-2)~]} + ... 

"el ... f z n - l + ~ n - 2  

x ~(rl){exp[(t~ - rz)~])~(~'2){exp[(tz - tl - r2)~]) . . -  

• ~(~-,)(exp[-(t,_z + ~-~)L~]} + ..- (56) 

which was found by Balescu and Wallenborn. ~4) Besides, as one can easily 
check by substitution, Eq. (33) is satisfied by the solution K~ = e x p ( -  rF~ 
if, according to Eq. (32), F ~ obeys the nonlinear equation C2z) 

fo r ~ = ~ + dr ~(r) e x p ( -  ~-r ~ (57) 

In our (linear) formulation of the problem one can be sure that the solution 
for I "~ (if it exists) is uniquely defined with its expansion of yon Neumann 
type (56), which cannot be asserted on the basis of Eq. (57). 

4. M A C R O S C O P I C  DESCRIPT ION 

Let us now consider the extent to which we may count on the fulfillment 
of the damping conditions (29)-(31) in real many-particle systems. First, 
all the conditions are automatically satisfied if the condition (31) is fulfilled. 
This situation corresponds to the supposition about the regularity of the 
Laplace transforms of all the fragments of the theory at zero, used in the 
work of the Brussels school, so that condition C seems to play the funda- 
mental role. However, it is just this condition (at least in the strong sense) in 
which we can be least sure. 
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Indeed, the contraction of the description has a sense only when the 
P subspace occupies a negligible volume in the full state space (usually of 
zero measure). Therefore, the spectrum of the operator ~ = Q~Q does 
not differ essentially from the spectrum of ~r and, in particular, it is dense 
near zero. Due to this, the action of the propagator 0(t) [(9)] does not 

/ 

lead to forgetting the arbitrary microscopic state h(0). Besides, even for 
vectors that are not integrals of motion in the Q subspace, the convergence 
in the condition C may be nonuniform in the phase space [the latter is 
considered as the domain over which the vectors F(t) are defined], which 
usually just takes place in the so-called "resonance" zones. It can be supposed 
that the "dangerous" domains (in the sense of the failure of condition 
C) of state space and phase space have zero measure; however, this can be 
justified only if we are interested in actually infinite times. Since for a reason- 
able physical interpretation of the theory damping on the finite time intervals 
is needed, these domains have finite measure and cannot be neglected on the 
basis of any physical considerations, since in the framework of macrotheory 
the microstate is not controllable. 

There are rather less doubts about condition B [(30)], since in that case 
the propagator (~(t) acts on the quite definite operator ~e2 = Q~2~P, which 
describes the interactions in the system. Therefore, we may hope that the 
interactions characteristic of real many-particle systems do not prevent 
C(T) from being damped. 

Finally, if the set of macroobservables (i.e., the operator P) is chosen 
correctly, then, apparently, conditions A1 and A2 are definitely fulfilled. The 
thing is that the definitions of ~b(~-) and D(~-) include the operator ~1  = P~"~Q 
which always contains the integration over the phase variables. Due to this, 
the contribution of the "dangerous" domains is integrally small and quickly 
decreases with time. In other words, the operator ~1  realizes the mixing in 
the system, which in the end provides the elimination of the microinformation. 

In connection with the foregoing, we should state one reservation. In 
many problems the dynamical equation (1) is formulated either in terms of 
distribution functions or in terms of dynamical observables, and in both 
cases it is not the state vector F(t) [orf(t)]  itself that is of interest, but the 
average values of observables. The latter are calculated by integrating the 
state vector over phase space either with the "gross observables" (such as 
energy, particle number, etc.) or with " g o o d "  distributions, due to which the 
same effect is achieved as in the action of the operator ~ l - - t h e  elimination 
of the irrelevant microscopic information. In this situation the formalism 
may be treated in the "weak"  sense, i.e., we may use all the obtained results, 
even those that require the fulfillment of conditions B and C, bearing in 
mind that they become of particular significance only after the calculation 
of the average values. When such integrations are not imposed by the demands 
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of the interpretation (for instance, in the theory of stochastic equations), 
the subdynamic formalism does not work in full measure. 

The proper macroscopic description (49) has the strong sense in all 
cases, since for its basis only conditions A1 and A2 are required. However, 
an important point must be taken into account: As follows from Eqs. (40) 
and (57), the existence of the operators I '~ and D ~ is provided only by the 
exponentially quick damping of the fragments ~b(t) and D(7). Otherwise 
the corresponding time integrals are divergent due to the presence of slow 
exponential functions, since the operators P~ and 17 ~ have negative eigen- 
values (although concentrated in small circle of radius ~ T~ 1 around zero). 
Thus, in order to make the macroscopic description of the dynamical system 
possible, the latter must have the property of "exponential decay of correla- 
tions ''(22~ or even be a " Y  (or C) system" in the sense of Anosov. ~22,23~ 
However, this is not too strong a requirement, since real systems are usually 
extremely unstable with respect to the initial state (dynamically unstable). 
It is due to the instability that the existence of the time scale hierarchy is 
possible. 

In the light of the above considerations the situation appears as follows. 
Having chosen some definite dynamical problem and the set of macro- 
observables of interest (i.e., the operator P), we settle on the microscopic 
scale Tm on which the fragments D(t)  and 4J(t) are damped. On the other hand, 
the operator P defines the macroscopic scale 7u on which the macroobserv- 
ables evolve. The scale r* on which the averaging of the dynamical picture 
occurs is fixed by experience. The macrotheory has objective sense only with 
the conditions 7m << 7" <<TM and, thus, the macroscopic description is 
inevitably the asymptotic one with respect to the parameter e ~ Tm/'C M. The 
parameter usually enters in the dynamical operator explicitly, LY = Lao + eLY', 
which enables one to expand the generator of macroevolution r ~ in powers 
of e. It is essential that due to the exponential damping of microinformation 
the macrotheory is asymptotically exact. Indeed, as one can readily check, 
for the simplest law of damping of ~b(t) and D(t),  exp(-t/Tm), the error 
committed in the passage from the exact master equation (28) to the macro- 
scopic equation (49) [i.e., the averaging of Eq. (28) on the scale 7" due to 
which the contribution of the right-hand side is neglected] does not exceed 
O[exp(-7*/Tm)]. Choosing 7" ~ ~/~7M, we obtain the exponentially small 
error O[exp(- 1/~/~)], due to which, in particular, all the terms of the expan- 
sion of P~ in e are meaningful. 

Let us now turn to the discussion of the initial condition for the macro- 
theory [see Eq. (50)], 

f~ = A~ + D~ (58) 

which contains, seemingly unexpectedly, the contribution of the initial micro- 
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information, whereas the direct averaging of Eq. (28) excludes this con- 
tribution. This circumstance represents in the most general form the situation 
known in hydrodynamics as the Hilbert paradox--the term is due to Uhlen- 
beck. ~2~) The point is that, using the methods of Chapman and Enskog or of 
Hilbert, we express the normal solution of the Boltzmann equation [F~ = 
(1 + C~176 in the given formalism] through the macroscopic variables, 
fully defining its time evolution by the initial values of these variables [f(0)]. 
The suspicion arises at once that the method gives too specific a solution 
and the correct result should contain the contributions from higher moments 
[h(0)]. More detailed investigation has induced some authors (see, for instance, 
Refs. 25 and 26) to include in the theory the so-called "initial slip," i.e., to 
correct the initial value by taking into account the role of higher moments. 
Such corrections were calculated approximately up to the Barnett approxima- 
tion, but we can show that the exact result is given by Eq. (58). For the model 
problem this was stated by Hauge. (27) 

As a matter of fact, this result is too formal and is not in the spirit of 
the macroscopic theory. Indeed, formulas (47) and (48) providing for the 
initial slip are obtained by the smoothing of the current solution without 
any restrictions on the initial state, so, although correct, they are not adequate 
to experience. The arbitrariness is removed if we take into account that the 
initial state (as well as the current state) is controlled only by the macro- 
scopic experiment. In the process of measurement the initial state is smoothed 
and its only possible choice is defined, according to Eq. (48), by the relation- 
ships 8 

f(0) =f~ D~ = D~176 = D~176176 (59) 

Inserting these in Eq. (58) and using the identity (A.4), we have 

f~ = A~ + D~176176176 (60) 

Thus, the Hilbert "paradox"  is the result of incomplete physical considera- 
tion. The asymptotic solution F~ with the macroscopic initial condition is 
adequate to the real observation and, what is more important, the proper 
macroscopic theory (49) is closed and causal. 

It is interesting to note that the solution of the macroscopic problem 
(49) gives information about the solution of the complete dynamical problem 
(although in the weak sense). This fact may be used for practical purposes. 
For instance, it is sometimes difficult in hydrodynamics to state the initial 
or boundary conditions for the macroscopic characteristics, while the 
corresponding conditions for the distribution function raise no doubts. In 
this case, in spite of the usual approach of dealing with the complete problem, 

8 The combination D~ ~ in Eq. (59) as well as ~a~C~ in Eq. (63), is well defined even if 
the operator C ~ does not exist. (15~ 
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we may take advantage of the following simple recipe. If the conditions for 
the complete state vector (in symbolic form) are 

W[F] = 0 (61) 

then the conditions f o r f  ~ which is consistent with the given level of descrip- 
tion, are defined as follows: 

W[(1 + C~ ~ = 0 (62) 

In conclusion, we mention that in cases when the damping condition 
C [(31)] is not fulfilled, the synchronization condition (48), as well as the 
subdynamics, has the weak sense. Actually, however, for the basis of the 
macrotheory it is sufficient to suppose the synchronization of ~lh~ [not 
of h~ with f~ But in such a form the supposition is fulfilled in the 
strong sense (15): 

~ h ~  = ~lC~176 = 7~176 (63) 

5. C O N C L U S I O N  

The main inference from the above considerations is that in the dynamical 
foundation of the macroscopic theory we may, using a reasonable physical 
interpretation, avoid many speculations having no physical (experimental) 
basis--the suppositions of a probability theory nature, the concepts of 
ensembles, of coarse-graining in phase space, etc. In fact, if the dynamical 
system is sufficiently unstable [such as a "  Y(C) system"] and the set of macro- 
observables is chosen correctly, we naturally come to the closed, causal, 
asymptotically exact macroscopic description without additional supposi- 
tions. The only trick we use is the smoothing (in time) of the dynamical 
picture, which mirrors a real observation with finite time resolution. From 
this, in particular, it follows that the irreversibility of the macrodescription, 
i.e., the presence of an odd with respect to ~ component of the generator 
of macroevolution, F~162 ~ P ~  ~e) is the consequence of the observation. 

The foundation of this approach is reduced to a check of the sufficiently 
quick damping of the quantity ~ ( t ) h  for an arbitrary vector h in the micro- 
state space. For the present this assertion is not proved, but recent progress 
in methods of ergodic theory (28~ enables us to hope that such a proof will be 
obtained in the near future (although the ergodic theory itself bears no 
relation to the foundation of the macrodescription). Actually, the problem is 
not too difficult: Although we deal, in essence, with the analysis of the 
complete dynamical problem, for the foundation of macrotheory it is suffi- 
cient to restrict ourselves to not too rough majorant estimations. At present 
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this damping condition may be verified, at least, by the perturbational 
method. By this method, in particular, one may check the choice of the 
projector P, which usually is made based only on physical considerations. 

A P P E N D I X  

Here we present simple proofs of the main relationships of the theory. 
We take into account that the operators A ~ = PA~ C ~ = QC~ D ~ = 

P D ~  etc., have definite P and Q components and omit the operators P 
and Q in all cases where no misunderstanding can arise. For simplicity we 
consider all the damping conditions (29)-(31) to be fulfilled. 

Taking advantage of the semigroup property of the fundamental 
solution 

U(tl)U(t2) = U(h  + t2) (n.1) 

performing the limit tl, t2 -+ o% and taking into account the definition 

F ~ = A ~ ~F~ ~ (A.2) 

and the results of Section 3, we can calculate the P P  component of Eq. (A. 1): 

[exp(qP~176176176 + [exp ( t lF~176176176176  exp(t2F ~ 

= [exp(hF~ ~ exp(t2P ~ (A.3) 

After the cancellation of common factors we obtain the identity C17,18~ 

A~ + D ~ 1 7 6  ~ = A ~ A~ + D ~  ~ = P (A.4) 

We define 

F ~ = ~ + ~~176 r ~ = /~ + D~ (A.5) 

[the first equality is the consequence of Eqs. (43) and (57); the second is the 
result of its "star-transformation ''(3~] and calculate by partial integration 
the quantity 

fo C~ ~ = d~ [exp(~)]~e~[exp( - ~ r o ) j r  o = ~e~ + • c  o (A.6)  

With the help of Eqs. (A.5) and (A.6) we have 

~(I + C ~ ~+ 5r 2 + ~tC ~ + SC ~ = (I + C~ ~ (A.7) 

In addition, substituting F ~ of Eq. (A.5) in Eq. (A.6), we obtain the equation 
for C~ 

s 1 6 2  ~ - C ~  = - ~ e ~  + C ~  ~ (A.8) 
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Analogously (or using the "s ta r - t ransformat ion")  we have for D ~ 

F~176 = ~ 1  + D ~ (A.9) 

e(1 + D~ ' = r~ + D ~ (A.IO) 

~ D ~  -- D ~ = ~ z  - D%L#2 D~ (A.11) 

N o w  we can check the agreement of  definitions (A.5) with Eq. (A.2), rewriting 
the latter in the fo rm 

r*(1 + D~ ~ = (1 + D ~ 1 7 6  ~ (A.12) 

Substituting in this equation C~  ~ [(A.6)], F~176 [(A.9)], and (A,5), we find 
that  it is an identity. 

Finally, let us prove that  the operator  II  [(51)] commutes  with U(t). 
Taking into account  Eqs. (A.2), (A.7), and (A.10), we have (19) 

U(t)II  = [exp(t~a)](1 + C~176 + D ~ 

= (1 + C~176176 + D ~ 

= (1 + C~176 + D ~ 

= (1 + C~176 + D ~ exp(t~ a) = rtu(t) = u ~  (A.13) 
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